CITS4407 Open Source Tools and Scripting
Version control, processes and pipelines

Unit coordinator: Arran Stewart

1/27

Overview

This week:

o files and filesystems — how does the Unix approach differ from,
say, Windows?

@ processes — what are they?

@ what is version control, and why should we use it?

2/27

Files and filesystems

@ Some things about a Unix system are not too dissimilar to
Windows.

o For instance — users' data is stored in files, files are stored in
directories, and both are stored on disks.

o But some other aspects are quite different.

3/27

“Everything is a file”

The Unix philosophy is to treat almost everything as a file.

@ On Windows — if you want to see what tasks are running, there
is a task manager program you can run which gives you this
information.

o If you want to see what devices (like microphones or USB
drives) are plugged in, there is a device manager program you
can run.

4/21

“Everything is a file”

On Linux — all that information is visible by looking at the content
of particular files.

(These are virtual files, and are said to live in a virtual filesystem.
This just means they don't represent an actual file stored on disk,
but rather present a “view” of some aspect of the operating system.)

@ For convenience, Linux does also have graphical (and
command-line) programs much like Windows's task manager
and device managetr;

o however, they're not necessary — you could get all the
information you needed just by looking in particular files.

In a lab, try typing “ls /proc” sometime. The /proc directory
holds details of all the programs that are currently running.

5/27

Processes

@ To be more precise, what the /proc directory lists is details of
processes.

@ To a first approximation, you can think of a process as “a
running program” ...

o But processes aren't necessarily “running’.

@ They could be running, or they could be

o waiting for data from a device like a disk drive

o sleeping, because the process is waiting for an event like the
user hitting a key on the keyboard

o stopped (which you might think of as like “suspended”) —
usually because the user deliberately stopped the process.

6/27

Processes

o We can also see what processes are running by using the
command “ps”.

arran@barkley:cits4407-website$ ps
PID TTY TIME CMD
2008 pts/24 00:00:00 ps
21347 pts/24 00:00:00 bash
31247 pts/24 00:00:08 evince

(Evince is a PDF viewer on Ubuntu Linux.)

7/21

Processes

By default, ps only list processes that are part of what is called “the
current session” (programs launched from the terminal, or terminal
window, you're currently in).

ps -A lists all processes on the computer. Not just commands run
by you, the user, but also what are called daemons — programs
started by the operating system, and which run constantly “in the
background”.

(Windows has an equivalent notion; on Windows, programs like this
are called “services".)

8/27

Processes and pipelines

One feature pioneered by Unix! is the idea of what are called
pipelines between processes.

Often, we will want to perform multiple operations on a file — we
might have student information stored in files, and might want to
extract student names and marks; then sort the result of that, in
descending order, by mark; then take just the top five students
listed; and then send that list to a printer (or a program that, say,
converts the result to PDF format).

! Although the idea had appeared independently before.
9/27

Processes and pipelines

We could do the extraction of names and marks, and store the
result in a file; and then sort that file, and put the sorted result in a
second file; and then run a command which just gives us the first
five students.

But Bash allows us to avoid explicitly creating all those intermediate
files, and instead “chain” commands together — piping the result of
one command to another command.

10/27

Processes and pipelines

Piping in bash is done using what is often called (by programmers)
the “pipe" character, “|"

(Usually found just above the “enter” key, on English-language
keyboards.)

11/27

Processes and pipelines

The sequence of commands to extract names and marks, sort, and
get the first five lines could be done put in a “pipeline” like this:

$ cut -f 1,4 marks.txt | sort -n --key 2 | head -n 5

We'll see how to “compose” pipelines in the lab/workshops.

12/27

Version Control, Git, and GitHub

Version Control, Git, and GitHub

13/27

Version Control, Git, and GitHub

Version control

At its simplest, a version control system (VCS) lets you track how a

set of files change over time, and lets you “roll back” to previous
points in their history.

More complex things you might do are

@ “roll back” to some previous point in time, and then “branch
off”, making different changes to the ones you made previously
o delete “branches” of history you no longer need

@ merge branches of history — combining the changes made in
two separate branches.

14 /27

Version Control, Git, and GitHub

Version control

Often, people working with files end up creating “informal” version
control systems themselves — keeping multiple versions of a file like

o AlgorithmsAssignmentlDraft.doc

@ AlgorithmsAssignmentlFinalVersion.doc

o AlgorithmsAssignmentlFinalFinalVersion.doc

o AlgorithmsAssignmentlFinalFinalVersion (02).doc

so that they can get back to a previous version if they need to.

15 /27

Version Control, Git, and GitHub

Version control

But this kind of informal “version control system” relies on us
remembering what each file name meant, and how it related to
other files — and it becomes harder to manage if multiple people are
trying to make many changes to the files at once.

But that sort of situation is exactly the case when writing software
(or managing business data).

16 /27

Version Control, Git, and GitHub

Version control

So we use software version control systems, which track

@ when a file was changed, and how

@ who changed it

o why they changed it (by allowing users to leave comments
about the changes they have made)

o how the change relates to other changes — what changes came
before and after it.

17/27

Version Control, Git, and GitHub

Advantages of version control

If we ever need to

o take all our files back to the state they were in on 1 March,
2020

o look at conflicting changes two users have made to a file, and
decide which should take precedence

o work out exactly which change introduced a bug which crashed
our system last week

then version control systems let us do this.

18/27

Version Control, Git, and GitHub

Git

We will suggest using a version control system call Git, created by
Linus Torvalds (the creator of Linux) for tracking changes made to
the Linux kernel, in 2005.

19/27

Version Control, Git, and GitHub

Terminology

Some terminology —

@ a repository (or “repo”) is a set of files you wish to track

@ a repository may be stored on a remote server — some
computer that stores the files

e a commit (or “revision”) is a state of the files at a particular
point in their “history”

o cloning a repository means to make a copy of it (including all
the history details etc it contains) — typically the new repository
will keep a record of where it was cloned from

20/ 27

Version Control, Git, and GitHub

Very basic Git use

An example of use:

$ cd MyProjects

$ mkdir assignmentl
$ cd assignmentl

$ git init

21 /27

git init

22/27

git init

git init

Here we've create a directory to store files in, and initialized it as a
Git repository.

That creates a hidden directory call “.git" within our
assignmentl directory, and files in this hidden directory track all
the information about what changes were made when.

23/27

git init

Adding files

Suppose we now create a file in our assignmentl directory
(perhaps using a text editor) called “fabulous-program.sh”, and
decide we now wish to keep this file under version control.

$ git add fabulous-program.sh
$ git commit -m "initial version of the fabulous program"

Every time we make a change to the file which we wish to record,
we repeat these commands.

24 /27

git init

Other Git operations

“init”, "add” and “commit” are examples of what are sometimes

called subcommands — key words that specify a particular way you

want to use a command, and which have arguments (the words that
appear afterwards) of their own that control their behaviour.

In lab/workshops, we will see how to perform more complex
operations — but if you know the init, add and commit commands,
you can be assured that you can retrieve previous versions of your
files.

25 /27

git init

GitHub

@ Don't confuse the “git" command with GitHub

@ "git" is an open source program; GitHub is a web-based
hosting service for git repositories, currently owned by Microsoft

o GitHub is extremely popular, but there are many other
competing hosting services:

o BitBucket (https://bitbucket.org/)
o GitLab (https://gitlab.com)
o SourceHut (https://sourcehut.org)

26 /27

https://github.com
https://bitbucket.org/
https://gitlab.com
https://sourcehut.org

git init

Hosting services

@ Also note that nothing about git requires that you use a
hosting service — they are simply convenient ways of sharing a
repository with other people.

@ Some software projects host their own repositories (“hosting” a
repository just means having a website through which the
repository is accessible)

@ Some projects and organisations don't use Git at all — there are
many other version control systems available (though Git is
certainly one of the most popular)

27 /27

	Version Control, Git, and GitHub
	git init

