
CITS4407 Open Source Tools and Scripting
Editors, scripts, and control structures

Unit coordinator: Arran Stewart

1 / 35

Overview

This week:

variables
creating our own commands
control flow

2 / 35

Storing information in shell variables

Bash will let us store information we want to keep for later in variables –
these let us give the information a name, and refer to it later.

$ useful_url="http://pixelastic.github.io/pokemonorbigdata/"
$ echo $useful_url
http://pixelastic.github.io/pokemonorbigdata/
$ firefox $useful_url

3 / 35

Unsetting variables

If we want to get rid of a variable, we can use unset:

$ unset useful_url

$ echo $useful_url

$

4 / 35

Environment variables

In fact, every time we use a Linux environment, there are already a
large number of variables defined.

$ echo $USER

arran

$ echo $PWD

/home/arran/teaching/cits4407

$ echo $BASH_VERSION

4.3.48(1)-release

5 / 35

Environment variables

Environment variables

6 / 35

Environment variables

Environment variables

Every running process – not just bash programs – has a set of
environment variables.

These normally have names in uppercase.

A few environment variables defined by Linux:
HOME – the path to your home directory
PATH – a colon-separated list of directories which will be
searched for executables
PWD – the current working directory
USER – your username

7 / 35

Environment variables

Environment variables

8 / 35

Environment variables

Environment variables

Environment variables are a little different from normal variables.

When we run an external command – i.e. not a builtin bash
command – it inherits its environment from bash.

It doesn’t inherit normal variables – just environment variables.

9 / 35

Environment variables

Environment variables

10 / 35

Environment variables

Environment variables

But we can make a normal variable an environment variable:

$ useful_url="http://pixelastic.github.io/pokemonorbigdata/"

$ export useful_url

11 / 35

Environment variables

Environment variables

12 / 35

Environment variables

Environment variables

But we can make a normal variable an environment variable:

$ useful_url="http://pixelastic.github.io/pokemonorbigdata/"

$ export useful_url

13 / 35

Environment variables

Environment variables

14 / 35

Environment variables

Environment variables

Or turn it back into a normal variable again.

$ export -n useful_url

(Typing help export gives a little more information on this.)

15 / 35

Environment variables

Variables

If we want to see all variables – the command to use (unintuitively) is set:

$ set
BASH=/bin/bash
BASHOPTS=checkwinsize:cmdhist:complete_fullquote:expand_aliases
BASH_ALIASES=()
BASH_ARGC=()
BASH_ARGV=()
BASH_CMDS=()
BASH_COMPLETION_COMPAT_DIR=/etc/bash_completion.d
BASH_LINENO=()
BASH_REMATCH=()
BASH_SOURCE=()
...

16 / 35

Environment variables

Numbers in variables

By default, Bash treats variables as containing strings of text.
But it’s also possible to convince bash to treat variables as
numbers:

$ myvar="3"
$ echo $((myvar + 4))
7

17 / 35

help on bash commands and constructs

help on bash commands and constructs

18 / 35

help on bash commands and constructs

help on bash commands and constructs

Help on ((:

19 / 35

help on bash commands and constructs

$ help "(("

((...)): ((expression))

Evaluate arithmetic expression.

...

20 / 35

help on bash commands and constructs

Commands in variables

We could use variables to store frequently used commands, so we
can refer to them later:

$ cd_scripting="cd /home/arran/teaching/cits4407"

$ echo $cd_scripting

/home/arran/teaching/cits4407

$ $cd_scripting

$ pwd

/home/arran/teaching/cits4407

But there are better ways of creating our own commands.

21 / 35

help on bash commands and constructs

Creating our own commands

We’ve seen that bash lets us use external commands – programs
sitting somewhere on our Linux system – as well as built-in
commands.

There are several ways to make new commands.

22 / 35

help on bash commands and constructs

alias

A simple way to do so is to use the alias command.

For instance, if I frequently want to change directory into the
directory where I keep my CITS4007 content, I might write:

alias cd-scripting="cd /home/arran/teaching/cits4407"

This creates a new command, cd-scripting, which runs the cd

command with the argument
/home/arran/teaching/2021/cits4407.

23 / 35

help on bash commands and constructs

alias

And now, I can just type cd-scripting to get to that directory.

In fact, you likely already have some aliases already defined. Typing
“alias” on its own shows what they are:

$ alias
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias gs='git status'
alias l='ls -CF'
alias la='ls -A'
alias ll='ls -alF'
alias ls='ls --color=auto'
alias rl='readlink'

24 / 35

help on bash commands and constructs

Defining commands

Some other ways I can define a command are:

write a function:
cd_tmp () { cd /tmp; }

put one or more bash commands in a bash script:
echo "cd /tmp" > cd_tmp

create an executable program in some other language besides
bash – for instance, C.

25 / 35

help on bash commands and constructs

Defining commands

Some other ways I can define a command are:

write a function:
cd_tmp () { cd /tmp; }

put one or more bash commands in a bash script:
echo "cd /tmp" > cd_tmp

create an executable program in some other language besides
bash – for instance, C.

26 / 35

help on bash commands and constructs

Defining commands

Some other ways I can define a command are:

write a function:
cd_tmp () { cd /tmp; }

put one or more bash commands in a bash script:
echo "cd /tmp" > cd_tmp

create an executable program in some other language besides
bash – for instance, C.

27 / 35

help on bash commands and constructs

Scripts

We’ll look at function definitions later; today we’ll consider scripts.

A bash script is just a file containing one or more bash commands.

my-script:

1 echo "Hello, the date today is:"

2 date

28 / 35

help on bash commands and constructs

Scripts

If we know the location of a bash script, we can ask bash to run it:

$ bash /home/arran/my-script

Hello, the date today is:

Wednesday 10 March 13:43:53 AWST 2021

29 / 35

help on bash commands and constructs

Scripts
If we make the script executable, and give it a special first line – called the
shebang line – then we tell Linux to always run that script using bash:

my-script:

1 #!/bin/bash
2
3 echo "Hello, the date today is:"
4 date

$ chmod a+rx /home/arran/my-script
$ /home/arran/my-script
Hello, the date today is:
Wednesday 10 March 13:44:17 AWST 2021

30 / 35

help on bash commands and constructs

Scripts

And if we tell bash a location where we are storing scripts, we can
run our script without having to specify the location:

$ mkdir /home/arran/bin

$ mv /home/arran/my-script /home/arran/bin

$ PATH=/home/arran/bin:$PATH

$ my-script

Hello, the date today is:

Wednesday 10 March 13:49:42 AWST 2021

31 / 35

help on bash commands and constructs

Expansion

When we put a dollar sign in front of a variable, bash is said to
expand the variable into the value we gave it:

$ echo $useful_url

http://pixelastic.github.io/pokemonorbigdata/

If we want to expand a variable, and have other text adjoining it, we
can demarcate its name with braces:

::: foo

echo ${useful_url}andotherstuff

http://pixelastic.github.io/pokemonorbigdata/andotherstuff

32 / 35

help on bash commands and constructs

Expansion

Bash does many different sorts of expansion besides expanding variables.

From the bash man page:

EXPANSION
Expansion is performed on the command line after it has been split into
words. There are seven kinds of expansion performed: brace expansion,
tilde expansion, parameter and variable expansion, command substitu-
tion, arithmetic expansion, word splitting, and pathname expansion.

The order of expansions is: brace expansion; tilde expansion, parameter
and variable expansion, arithmetic expansion, and command substitution
(done in a left-to-right fashion); word splitting; and pathname expan-
sion.

...

We’ll look at these in more detail in lab/workshops.

33 / 35

help on bash commands and constructs

Flow control

Often in bash scripts, we’ll only want to do something if some
condition is true.

The built-in “if” command lets us do this:

$ if ls xxx; then echo "xxx exists"; else echo "it doesn't"; fi
ls: cannot access 'xxx': No such file or directory
it doesn't

34 / 35

help on bash commands and constructs

if

In scripts, we normally don’t write if statements on one line.

myscript.sh:

if /commands/; then
/commands/

elif /commands/; then
/commands/

else
/commands/

fi

More on control flow in future classes.

35 / 35

	Environment variables
	Environment variables
	Environment variables
	Environment variables
	Environment variables
	help on bash commands and constructs

