
Functions Script design

CITS4407 Open Source Tools and Scripting
Shell functions and script design

Unit coordinator: Arran Stewart

1 / 24

Functions Script design

Overview

This week:

Shell functions and script design
Regular expressions

2 / 24

Functions Script design

Functions

3 / 24

Functions Script design

Bash scripts

From previous lectures, labs and reading, you should now know
what a Bash script looks like:

some-script.sh

#!/bin/bash

A script to say hello

echo 'Hello World!'

4 / 24

Functions Script design

Bash scripts

We can execute a file like this by typing
bash some-script.sh

Or, if we make the file executable, by typing
./some-script.sh
By default, Linux doesn’t let us run just any file as a program
Linux records whether a file is readable or writable, as well as
whether it is executable

So writing a script effectively lets us create a new command –
some-script.sh – composed out of existing commands.

5 / 24

Functions Script design

Functions

Another way to create a new command is to write a Bash function.

Functions are somewhat like scripts – they execute a series of
commands – but also like variables; they are stored in memory, and
we can over-write them and un-define them.

We can create functions from within scripts, or at the command line.

6 / 24

Functions Script design

Functions at the command line

Functions are created by giving their name, a pair of parentheses –
“()” – and a sequence of commands, contained between braces.
Once created, we can treat them much like any other command:

$ print_the_date () { echo "the date is:"; date; }
$ print_the_date
the date is:
Tue 23 Mar 12:02:22 AWST 2021

Here, our function is all on one line, so we use the semicolon
character “;” after each command, to show where it ends.

But you can just start typing print_the_date (), and Bash will
prompt you to keep entering more lines, until you finish by typing a
closing brace, }.

7 / 24

Functions Script design

Functions in scripts

Or, we can create functions from within a script.

In that case, we usually type one command per line, and don’t need
the semicolons.
another-script.sh

#!/bin/bash

define a function
print_the_date () {
echo "the date is:"
date

}
invoke the function
print_the_date

8 / 24

Functions Script design

Function arguments

Like other commands, functions can take arguments.

If we invoke a function like this:

my_function alpha beta zeta

Then within the function, the strings "alpha", "beta" and "zeta"

will be available in variables called $1, $2, and $3.

9 / 24

Functions Script design

Function arguments
So we can write a function that takes one argument – a person’s
name – and greets that person:
greet.sh

#!/bin/bash

greet_a_person () {
echo "Hello, $1."
date

}

greet_a_person Bob

Running this script will print
Hello, Bob.

10 / 24

Functions Script design

Similarity to variables

Like variables, functions are stored in memory by Bash.

If you run the “set” command, you can actually see the code for
your functions which Bash has stored in memory:

$ print_the_date () { echo "the date is:"; date; }
$ set
... many lines omitted ...
}
print_the_date ()
{

echo "the date is:";
date

}

11 / 24

Functions Script design

Similarity to variables

And you can un-define a function, using unset -f:

$ print_the_date () { echo "the date is:"; date; }
$ unset -f print_the_date
$ print_the_date
print_the_date: command not found

12 / 24

Functions Script design

Similarity to variables

Also like shell variables, you can “export” a function, so that its
definition will be passed on to spawned programs or sub-shells – use
export -f function_name

$ print_the_date () { echo "the date is:"; date; }
$ bash -c "print_the_date"
bash: print_the_date: command not found
$ export -f print_the_date
the date is:
Tue 23 Mar 12:06:50 AWST 2021

13 / 24

Functions Script design

Script design

14 / 24

Functions Script design

Tips for script design

The assignments will require you to write your own scripts, so this
portion of the lecture provides some advice on how to tackle a
programming problem in bash.

15 / 24

Functions Script design

Checking for mistakes

The shellcheck tool1 helps spot some of the errors typically made
by beginning and intermediate Bash programmers.

On Ubuntu 20.04, we can install it with:

$ apt-get install shellcheck

1The code for shellcheck is available on GitHub at
https://github.com/koalaman/shellcheck – it is written in the Haskell
programming language.

16 / 24

https://github.com/koalaman/shellcheck
https://www.haskell.org

Functions Script design

Checking for mistakes

some-script.sh

#!/bin/bash

file_to_look_for=$1

if `ls $1` then
echo y;

else
echo n;

fi

If we try running this file, we get an
error message which tells us where
Bash had troubles understanding
what we mean – but doesn’t give
much advice on fixing it.

./some-script.sh: line 7: syntax error near unexpected token `else'

./some-script.sh: line 7: `else'

17 / 24

Functions Script design

Checking for mistakes
some-script.sh

#!/bin/bash

file_to_look_for=$1

if `ls $1` then
echo y;

else
echo n;

fi

shellcheck provides some advice on
what we might need to do:

$ shellcheck some-script.sh

In some-script.sh line 5:
if `ls $1` then
^-- SC1073: Couldn't parse this if expression.
^-- SC1010: Use semicolon or linefeed before 'then' (or quote to make it literal).

In some-script.sh line 7:
else
^-- SC1050: Expected 'then'.
^-- SC1072: Expected "#". Fix any mentioned problems and try again. 18 / 24

Functions Script design

Using a syntax-highlighting editor
You can create your scripts using any simple editor like nano (or
gedit).

But more powerful editors like vim understand the syntax of Bash
commands, and can also highlight problems in your scripts:

1. some-script.s…/lectures) - VIM

#!/bin/bash

 file_to_look_for=$1

>>if `ls $1` then
echo y;

>>else
echo n;

fi
~
~
~
~
~
~
~
~
~

1,1 All

File Edit View Search Preferences Tabs Help

19 / 24

Functions Script design

Using a syntax-highlighting editor

In vim, the command :lopen opens a window within vim that
contains a list of errors found, and their locations, so the editor can
show you errors while you’re writing your script:

1. some-script.s…/lectures) - VIM

#!/bin/bash

 file_to_look_for=$1

>>if `ls $1` then
echo y;

>>else
echo n;

fi
some-script.sh 1,1 All
some-script.sh|5 col 1 error| SC1073: Couldn't parse this if expression.
some-script.sh|5 col 12 warning| SC1010: Use semicolon or linefeed before 'th
en' (or quote to make it literal).
some-script.sh|7 error| syntax error near unexpected token `else'
some-script.sh|7 error| `else'
some-script.sh|7 col 1 error| SC1050: Expected 'then'.
some-script.sh|7 col 4 error| SC1072: Expected "#". Fix any mentioned problem
s and try again.
~
~
[Location List] 1,1 All
:update

File Edit View Search Preferences Tabs Help

20 / 24

Functions Script design

Using a syntax-highlighting editor

If you’re interested in setting up vim to do this, ask about it in the
workshop/labs.

Other editors and IDEs (Integrated Development Environments)
exist that will also show you errors – for instance, Visual Studio
Code, from Microsoft, or the Eclipse IDE – but we will focus on
vim, as it is available on a wider range of Linux systems.

21 / 24

Functions Script design

Start small and prototype

The Shotts textbook suggests using “top-down design” to solve
problems – try to break a problem down into smaller parts, and
solve them.

This is good advice – but sometimes you may not know how to
solve the smaller problems either, at first.

My suggestion – make a new script that allows you to experiment
with solving the smaller problem. Once you understand it –
incorporate your understanding into the larger script.

22 / 24

Functions Script design

Always have a working script

Don’t ever let errors stay in your script.

If Bash starts giving syntax errors – fix them, before trying to write
anything else.

There’s no point writing more code, if the code you have doesn’t
work.

23 / 24

Functions Script design

Commit frequently

Ensure you have a way of getting back to the last running version of
your script.

We suggest you create a Git repository for your code, and frequently
add the files you have changed, and commit them.

You can store your code on GitHub, if you like; but, a warning!
Don’t store your code in a public repository; make it “private”.

A public repository on GitHub is viewable by everyone, and sharing
your code for an assignment breaches the University’s Policy on
Academic Conduct – the CITS4407 assignments are to be worked
on individually.

24 / 24

	Functions
	Script design

