
Regular expressions, cont’d

CITS4407 Open Source Tools and Scripting
Shell functions and script design

Unit coordinator: Arran Stewart

1 / 33

Regular expressions, cont’d

Overview

This week:

Regular expressions

2 / 33

Regular expressions, cont’d

Regular expressions, cont’d

3 / 33

Regular expressions, cont’d

Regular expressions

We’ve mentioned one tool that makes use of regular expressions,
grep: it looks for lines in a file that match some pattern.

$ ls /bin | grep ^b
bash
btrfs
bunzip2
busybox
bzcat
bzcmp
bzdiff
bzegrep
bzexe
... more lines omitted

4 / 33

Regular expressions, cont’d

Special characters in regular expressions

We said that the following characters, called metacharacters, have a
special meaning to grep:

^ $. [] { } - ? * + () | \

5 / 33

Regular expressions, cont’d

Special characters in regular expressions
We’ve seen that the caret character, “^” means “at the start of the
line” – grep ^b means, “print all lines beginning with the character
b”.

Other special characters:

“$” means “at the end of the line”
grep s$ means ‘print lines ending with the character “s” ’.

$ ls /bin | grep 's$'
btrfs
bzless
less
ls
ps
ss
zless
... more lines omitted

6 / 33

Regular expressions, cont’d

Special characters in regular expressions

$ ls /bin | grep 's$'
btrfs
bzless
less
ls
ps
ss
zless
... more lines omitted

(Note the use of single quotes – why might we use them?)

7 / 33

Regular expressions, cont’d

Special characters in regular expressions – $

What regular expression would match only the string “ls”?

8 / 33

Regular expressions, cont’d

Special characters in regular expressions – .

A full stop matches any one character.

grep c.t means ‘print lines containing “c”, some other
character, then “t” ’.

$ ls /bin | grep 'c.t'
bzcat
cat
netcat
ntfscat
ntfsfallocate
ntfstruncate
zcat

9 / 33

Regular expressions, cont’d

Special characters in regular expressions – *

An asterisk (“Kleene star”) means “zero or more of the
previous item”

$ ls /bin | grep '^b.*'
bash
btrfs
bunzip2
busybox
bzcat
bzcmp
bzdiff
bzegrep
bzexe
... more lines omitted

So grep '^b.*' should actually give us identical results to
grep '^b' – why?

10 / 33

Regular expressions, cont’d

Special characters in regular expressions

Square brackets match a set or range of characters.

ls /bin | grep '^[bcd]' finds commands starting with b, c
or d.
ls /bin | grep '^[b-d]' does the same.

11 / 33

Regular expressions, cont’d

Special characters in regular expressions

Originally, grep only used the metacharacters we’ve mentioned, but
later, others were added:

| – match one thing OR another
? – match zero or one times
+ – match one or more times
{n} – (where n is a number) match exactly n times
{n,} – match n or more times
{,n} – match at most n times
{n,m} – match from n to m times

12 / 33

Regular expressions, cont’d

Special characters in regular expressions

Because they were added later, these metacharacters are treated a
bit differently. To use them we need to either

use grep with the -E option, meaning “use extended regular
expressions”, or
put a backslash in front of the special characters, so grep
knows they have a special meaning.

13 / 33

Regular expressions, cont’d

Examples

How can we find commands in /bin whose names are exactly
three letters long, and start with “c”?

How can we find commands in /bin whose names are exactly
four letters long, and end with a letter from the range “d”
through “g”?
How can we find commands in /bin whose names match either
of the criteria above?

14 / 33

Regular expressions, cont’d

Examples

How can we find commands in /bin whose names are exactly
three letters long, and start with “c”?
How can we find commands in /bin whose names are exactly
four letters long, and end with a letter from the range “d”
through “g”?

How can we find commands in /bin whose names match either
of the criteria above?

15 / 33

Regular expressions, cont’d

Examples

How can we find commands in /bin whose names are exactly
three letters long, and start with “c”?
How can we find commands in /bin whose names are exactly
four letters long, and end with a letter from the range “d”
through “g”?
How can we find commands in /bin whose names match either
of the criteria above?

16 / 33

Regular expressions, cont’d

sed – the “stream editor”

We can think of grep as being a little like the “find” functionality in
a word processor or browser – it finds lines matching a pattern.

Is there an equivalent of “find and replace”?

17 / 33

Regular expressions, cont’d

sed

There is – sed, the “stream editor”.

grep takes a single pattern to search for.

But sed takes two: a pattern to search for, and a string to replace
it with.

18 / 33

Regular expressions, cont’d

sed

$ ls /bin | grep '^c' | sed 's/^c/d/'
dat
dhacl
dhgrp
dhmod
dhown
dhvt
dp
dpio

19 / 33

Regular expressions, cont’d

sed

$ ls /bin | grep '^c' | sed 's/^c/d/'
dat
dhacl
dhgrp
dhmod
dhown
dhvt
dp
dpio

The “s” means to search for the regular expression ^c, and replace
it with the letter d.

20 / 33

Regular expressions, cont’d

sed

Conventionally, the forward slash (“/”) is used to separate patterns,
but we can use any character – handy if the forward slash turns up
within the text we’re trying to match.

$ ls /bin | grep '^c' | sed 's|^c|d|'
dat
dhacl
dhgrp
dhmod
dhown
dhvt
dp
dpio

21 / 33

Regular expressions, cont’d

sed

$ ls /bin | grep '^c' | sed 'sZ^cZdZ'
dat
dhacl
dhgrp
dhmod
dhown
dhvt
dp
dpio

For clarity, it’s usually best to stick to “/” or “|”.

You can also add g at the end to mean “search and replace,
multiple times”.

sed s/aa/bb/g
22 / 33

Regular expressions, cont’d

Functions with regexes

Can we write a function which gives us a new command,
extension-rename, which looks for files matching some particular
extension, and renames them so they have another?

23 / 33

Regular expressions, cont’d

Functions with regexes

A start: let’s just print files matching some extension.

myfunctions.sh

extension_rename () {
orig_ext=$1
new_ext=$2
for file in *.${orig_ext}; do
echo $file;

done
}

How does this work?

24 / 33

Regular expressions, cont’d

Functions with regexes

Trying it out:

$ source myfunctions.sh
$ extension_rename pdf
lect01.pdf
lect04.pdf
lect05.pdf
lect06.pdf

25 / 33

Regular expressions, cont’d

Functions with regexes

Now let’s print the new name, as well.

myfunctions.sh

extension_rename () {
orig_ext=$1
new_ext=$2
for file in *.${orig_ext}; do
new_file=`echo $file | sed "s/$orig_ext/$new_ext/"`;
echo $file $new_file;

done
}

26 / 33

Regular expressions, cont’d

Functions with regexes

Trying it out:

$ source myfunctions.sh
$ extension_rename pdf pdx
lect01.pdf lect01.pdx
lect04.pdf lect04.pdx
lect05.pdf lect05.pdx
lect06.pdf lect06.pdx

(There are actually ways of getting Bash to do what sed is doing
here – look in the Bash Reference Manual, §3.5.3 “Shell Parameter
Expansion”. This would run faster, for very very large numbers of
files; but we will stick to sed for the moment.)

27 / 33

https://www.gnu.org/software/bash/manual/bash.html#Shell-Parameter-Expansion
https://www.gnu.org/software/bash/manual/bash.html#Shell-Parameter-Expansion

Regular expressions, cont’d

Functions with regexes

Finally, let’s use the mv command to rename each file from the old
name to the new name:
myfunctions.sh

extension_rename () {
orig_ext=$1
new_ext=$2
for file in *.${orig_ext}; do
new_file=`echo $file | sed "s/$orig_ext/$new_ext/"`;
mv $file $new_file;

done
}

28 / 33

Regular expressions, cont’d

Functions with regexes

Trying it out:

$ source myfunctions.sh
$ extension_rename pdf pdx
$ ls *pdf
ls: cannot access '*pdf': No such file or directory
$ ls *pdx
lect01.pdx lect04.pdx lect05.pdx lect06.pdx

29 / 33

Regular expressions, cont’d

Program size
In fact, we could put the body of our function in a script,
extension_rename.sh, and use it that way:

extension_rename.sh

#!/bin/bash

orig_ext=$1
new_ext=$2
for file in *.${orig_ext}; do
new_file=`echo $file | sed "s/$orig_ext/$new_ext/"`;
mv $file $new_file;

done

The whole program takes 5 lines of code – small scripts are often shorter
and more convenient to write than coding in Python, and much shorter
than writing a program in a compiled language like Java or C.

30 / 33

Regular expressions, cont’d

Other sed features

sed has many other features.

We can ask it to do a search and replace, but only on line 4, for
instance:

sed '4s/dog/cat'

31 / 33

Regular expressions, cont’d

Other sed features

For instance:

$ for ((i=0; i<5; i=i+1)); do echo $i dog; done | sed '4s/dog/cat/'
0 dog
1 dog
2 dog
3 cat
4 dog

What is this doing?

32 / 33

Regular expressions, cont’d

Search and replace in vi and vim

We will not cover it in detail, but vi and vim use much the same
syntax for doing “search and replace”.

In either of these, the command

:%s/dog/cat/g

means “in the file we are currently editing – on all lines of the file,
replace every occurence of”dog" with “cat”.

33 / 33

	Regular expressions, cont'd

