
CITS4407 Open Source Tools and Scripting
Conditionals

Unit coordinator: Arran Stewart

1 / 18

Overview

This week:

Assignment questions
Conditionals

2 / 18

Conditionals in Bash

We’ve seen that Bash has “if” statements and “while” loops –
both of these use what are often called conditional expressions –
expressions which evaluate in some sense to being “true” or “false”.

if conditional ; then
statement 1;

statement 2;

fi

while conditional ; do
statement 1;

statement 2;

done

3 / 18

Conditionals in Bash

What is actually happening when Bash encounters a conditional in
an “if” statement? What does it expect to see in that spot?

The answer is, it expects to see a command, which succeeds or fails.

4 / 18

Commands in conditionals

So the following will print “no such directory” (assuming the
directory /xxxx doesn’t exist):

if ls /xxx; then

echo it exists;

else

echo no such directory;

fi

5 / 18

Commands in conditionals

if ls /xxx; then
echo it exists;

else
echo no such directory;

fi

The command “ls” succeeds when it is able to list something, and
fails when it can’t.

In Bash, every command can “succeed” or “fail”.

6 / 18

Exit codes

The way an external command tells the operating system whether it
succeeded or failed is by returning an exit code.

In Unix-like systems, an exit code of 0 means “success”, and
anything else means “failure”.

For instance, grep returns “success” when it finds matching lines,
and “failure” when it doesn’t.

(However, it also returns “failure” when something else went wrong
– for instance you tried to grep for a pattern in a file that doesn’t
exist.)

7 / 18

Exit codes

Linux has two programs that do nothing but return an exit code:

The “true” program always returns an exit code of 0
The “false” program always returns an exit code of 1

$ if true; then echo hi there; fi

hi there

8 / 18

Examining exit codes

Bash stores the exit code of the most recently executed command in
a special variable called “$?” (it allows you to query the most recent
exit code, hence the question mark).

$ true

$ echo $?

0

$ false

$ echo $?

1

9 / 18

Exit codes and non-external commands

In Bash, every command has an exit code – not just external
programs, but also built-in commands and user-defined functions.

When defining a function, you can use the “return” statement to
specify the exit value of your function.

always_fails () {

return 1;

}

10 / 18

Exit codes and non-external commands

always_fails () {

return 1;

}

If you don’t specify a return value, the exit value of the function will
be that of the last command it executes. So the following function
is equivalent to the one above.

always_fails () {

false;

}

11 / 18

Exit codes

Even built-in commands like “declare” (which can be used to
explicitly declare variables) have an exit code.

$ declare myvar=0

$ echo $?

0

$ declare 000=0

bash: declare: `000=0': not a valid identifier

$ echo $?

1

12 / 18

Arithmetic expansion

In Bash, an arithmetic expression inside double brackets (“((” and
“))”) also has an “exit code”.

$ ((1 == 1 && 2 == 2))

$ echo $?

0

$ ((1 > 10))

$ echo $?

1

It exits with 1 (failure) if the expression inside evaluates to “false”
or “0”, and 0 (success) otherwise.

13 / 18

Arithmetic expansion

If you have several conditionals you want to check, joined with “and”
or “or” – you might want to see if you can write them using
arithmetic expansion, which is often more convenient than using
square brackets (“[” and “]”).

if ["$var1" -eq 1] && ["$var2" -eq 1] && ["$var3" -eq 1] ; then
echo "correct";

fi

versus,

if ((var1 == 1 && var2 == 1 && var3 == 1)) ; then
echo "correct";

fi

14 / 18

Square brackets (test)

The left-square-bracket (“[”) is just another command, as far as
Bash is concerned. In fact, it’s usually available as an external
program:

$ which [

/usr/bin/[

15 / 18

Square brackets (test)

The square-bracket command takes multiple arguments, and expects
the last argument to be a right-square-bracket (“]”). And it then
exits with success or failure depending on its interpretation of those
arguments.

$ [-d /tmp -a -d /]

$ echo $?

0

$ [-d /tmp -a -d /xxx]

$ echo $?

1

16 / 18

Square brackets (test)

However, because it’s so frequently used, Bash also defines a
built-in command called “[”, and this will normally get called
instead of the external program.

If you absolutely wanted to use the external program, you would
have to write:

$ /usr/bin/[-d /tmp -a -d /xxx]

$ echo $?

1

This explains why Bash (or rather, the “[” command) is so picky
about spacing – it needs spaces to tell it where different arguments
start and end, and looks for “]” as its last argument.

17 / 18

Square brackets (test)

The /usr/bin/[program also comes in a variant called
/usr/bin/test, which doesn’t take any square brackets.

$ test -d /tmp -a -d /xxx

$ echo $?

1

18 / 18

