
CITS4407 Open Source Tools and Scripting
Build management

Unit coordinator: Arran Stewart

1 / 22

Overview

This week:

make and Makefiles

2 / 22

make and Makefiles

The make tool is used for building things on Unix-like systems, using
“recipes” contained in Makefiles.

What sort of “things”?

They could be:

PDF documents reporting on the results of experiments
complex programs, built from multiple files or packages
web sites (the CITS4407 site is tested using a Makefile)
Docker images, like the one used for Assignment 1
virtual machines

or almost any other sort of complex software artifact.

3 / 22

https://github.com/cits4407/cits4407.github.io/blob/master/Makefile

make and Makefiles

The make tool is used for building things on Unix-like systems, using
“recipes” contained in Makefiles.

What sort of “things”?

They could be:

PDF documents reporting on the results of experiments
complex programs, built from multiple files or packages
web sites (the CITS4407 site is tested using a Makefile)
Docker images, like the one used for Assignment 1
virtual machines

or almost any other sort of complex software artifact.

4 / 22

https://github.com/cits4407/cits4407.github.io/blob/master/Makefile

Makefiles

The recipes are contained in plain text files, conventionally named
Makefile, and at their simplest look something like this:

Makefile

workshop09.pdf: workshop09.md

pandoc --from markdown --to html \

--pdf-engine=weasyprint \

--output=workshop09.pdf workshop09.md

5 / 22

Makefile rules

workshop09.pdf: workshop09.md
pandoc --from markdown --to html \
--pdf-engine=weasyprint \
--output=workshop09.pdf workshop09.md

Makefile contain what are called “rules” for building things; their
syntax is

output: ingredient1 ingredient2 ...

→command1

→command2

→command3

→...

6 / 22

Makefile rules

output: ingredient1 ingredient2 ...

→command1

→command2

→command3

→...

The rule specifies:

something we want to make (the output);
what ingredients we need to make it; and
what commands we need to run, to turn those ingredients into
the output.

The arrows indicate “tab” characters. In a Makefile, the instructions
for how to build the output always start with a tab character. (But
we will not show them from now on.)

7 / 22

Makefile rules

workshop09.pdf: workshop09.md
pandoc --from markdown --to html \
--pdf-engine=weasyprint \
--output=workshop09.pdf workshop09.md

Here, workshop09.pdf is the thing we want to build;
workshop09.md is the ingredient we need in order to build it (a
Markdown file); and we use the pandoc tool to convert from
Markdown format to PDF.

8 / 22

Running make

Makefile

workshop09.pdf: workshop09.md
pandoc --from markdown --to html \
--pdf-engine=weasyprint \
--output=workshop09.pdf workshop09.md

To run make, we simply give the name of some output we want to
build – in this case,

$ make workshop09.pdf

9 / 22

Build management tools

make is an example of a build-management (or build automation)
tool.

Many others exist, but make is one of the oldest (originally created
by Stuart Feldman in April 1976 at Bell Labs)1 and most widely
used.

1https://en.wikipedia.org/wiki/Make_(software)#Origin
10 / 22

Dependencies

Makefile

workshop09.pdf: workshop09.md
pandoc --from markdown --to html \
--pdf-engine=weasyprint \
--output=workshop09.pdf workshop09.md

In build automation terminology, we say that workshop09.md is a
dependency of workshop09.pdf, and that workshop09.pdf is a
target.

11 / 22

Dependencies

If all make did was run a set of commands to build something, there
would be no great advantage to using it over a Bash script.

However, it also tracks whether any of the dependencies (and their
dependencies, and so on – there could be hundreds, in a large
Makefile) have changed and are newer than the the output.

If so, it knows the recipe needs to be re-run; if not, it knows the
output is up to date.

12 / 22

Dependencies

Makefile

workshop09.pdf: workshop09.md
pandoc --from markdown --to html \
--pdf-engine=weasyprint \
--output=workshop09.pdf workshop09.md

$ make workshop09.pdf

make: 'workshop09.pdf' is up to date.

$ touch workshop09.md

$ make workshop09.pdf

pandoc --from markdown --to html --pdf-engine=weasyprint

13 / 22

Dependencies

If we are building a very large software program, or a complex
output of some other sort, make ensures that

we don’t re-build things if we don’t have to – this can save a
great deal of time
we do re-build things when their dependencies have changed

14 / 22

Generic recipes

What if have multiple files, that are all built in the same general
way?

For instance,

workshop06.pdf

workshop07.pdf

workshop08.pdf

. . . and so on.

15 / 22

Generic recipes

If using pandoc to turn Markdown files into PDFs, we’ll always need
to run a command of the form

pandoc --from markdown --to html \

--pdf-engine=weasyprint \

--output=output.pdf input.md

but the files output.pdf and input.md will vary.

16 / 22

Generic recipes

make lets us write generic recipes, which use the following “special
variables”:

$@ – the current target file
$^ – all dependencies listed for the current target
$< – the first (left-most) dependencies for the current target

(There are many more special variables, but these are the most
common.)

17 / 22

Generic recipes

Using special variables, we can create a rule that looks like this:

Makefile

%.pdf: %.md
pandoc --from markdown --to html \
--pdf-engine=weasyprint \
--output=$@ $<

We can read this as saying:
“To build a PDF file, look for a Markdown file of the same base
name, but ending in”.md“.
Run the pandoc command specified in the recipe, but after
--output put the name of the output file we’re producing, and as a
final argument, put the name of the left-most dependency.”

18 / 22

Generic recipes

Makefile

%.pdf: %.md
pandoc --from markdown --to html \
--pdf-engine=weasyprint \
--output=$@ $<

(In this case, there’s only one dependency – but we could have more,
for instance, if our Markdown document refers to images.)

19 / 22

Makefile variables

The term “special variables” suggests make has the concept of
ordinary variables as well – and it does.

Let’s see how we might use them.

We might want to say, in order to run pandoc, you first have to
fetch the pandoc binary from the Internet.

Makefile

pandoc:
wget https://github.com/jgm/pandoc/releases/download/2.13/pandoc-2.13-linux-amd64.tar.gz
tar xf pandoc-2.13-linux-amd64.tar.gz
mv ./pandoc-2.13/bin/pandoc .

The URL where the pandoc binary is located is lengthy, and also
might change if we start to use a new version.

20 / 22

Makefile variables

So make lets us put fragments of text in variables;
once they are defined, we can expand them using the syntax $(var).

(This is similar to, but not quite the same as, the expansion syntax
Bash uses. Why might we not want to use the same syntax?)

Makefile

PANDOC_URL=https://github.com/jgm/pandoc/releases/download/2.13/pandoc-2.13-linux-amd64.tar.gz

pandoc:
wget $(PANDOC_URL)
tar xf pandoc-2.13-linux-amd64.tar.gz
mv ./pandoc-2.13/bin/pandoc .

21 / 22

Writing your own Makefiles

In the lab/workshops, there will be opportunity to write your own
Makefiles – and we will use them in Assignment 2.

22 / 22

