
CITS4407 Open Source Tools and Scripting
Semester 1, 2021

Week 5 workshop – Text and regular expressions

Before starting this workshop, make sure you’ve reviewed the recommended reading for
weeks 1–4, and completed the lab sheets for weeks 2–4.

0. Revision

In your reading from previous weeks, you should have read about the sort, uniq, wc,
head and tail commands. (If not – refer back to chapter 6, “Redirection”, of Shotts.)

Answer the following questions. It is suggested you try these problems on your own and
discuss with a partner – then compare your answers with the rest of the class.

Counting

� �
$ echo a b c� �

What is a pipeline we can add to the end of this command (i.e., the pipe character,
“|”, plus further commands) which will display how many words the echo command has
printed? How does it work?

One solution:

� �
$ echo a b c | wc -w� �

The wc command counts words, lines, or characters on standard input; wc -w will count
the number of words.

Duplicates

Executing the following

� �
ls /usr/bin /bin� �

will list the contents of the /usr/bin and /bin directories, which contain executable
programs for external commands.

1

Traditionally on a Unix-like system, /bin contains just a subset of the typical Unix
commands – it contains only those commands needed by the system for booting and
potentially repairing the system. Commands in /usr/bin/, on the other hand, are not
needed for booting or repair, and thus could be kept on a separate disk and loaded later.

Some programs appear only in /bin, some only in /usr/bin, and some appear in both
directories.

What is a pipeline we can add to the command shown, which will print the programs
found in both directories? How does it work?

One solution:

� �
ls /usr/bin /bin | sort | uniq -d� �

Here, uniq -d is used to print duplicate lines in its input. It requires the input to be
sorted, however, so we filter the output of the ls command through sort.

Challenge exercise: How can we print the files that are in /bin, but not /usr/bin?

1. Shell expansions

It is suggested you try these problems on your own and discuss with a partner – then
compare your answers with the rest of the class.

Hidden files

Try running the following in your Bash terminal:

� �
$ touch .hidden-file
$ ls -a
$ echo *� �

What do you expect to see, and why? Can you suggest a filename expansion that you
can put after “echo”, that will print .hidden-file (and possibly other dot-files in the
working directory)?

One solution:

� �
$ echo .*� �

Arithmetic expansion

Look at the following commands:

� �

2

$ touch file1
$ myvar="INSERT SOMETHING HERE"
$ echo file$((4 - myvar))� �

If you run these, you will just get an error. But assigning the correct value to $myvar will
result in file1 being printed by the echo command. What value do you need to insert,
and why does this work?

One solution:

� �
$ myvar="3"� �

Command substitution

Run the following commands:

� �
$ echo "some content" > file1
$ echo "$(cat file1)"� �

From previous weeks, you should know what the first line is doing – it is writing the
output of the echo command to file1.

The next line is performing a type of expansion called command substitution. The
dollar sign tells bash that the string between the parentheses should be interpreted as
commands to run, and the dollar and parentheses should be replaced by the output of
those commands.

� �
$ echo "some content" > file1
$ echo "$(cat file1)"� �

Look at the following command:

� �
$ echo "The location of the cp command is: XXX"� �

Suppose we wish to replace the XXX with the location of the cp command – what should
we put there, and why?

3

One solution:

� �
$ echo "The location of the cp command is: $(which cp)"� �

The which command is used here to show the location on the filesystem of the cp
command.

Quoting

Which of the following will print a single asterisk to the screen? Why?

a. echo *
b. echo "*"
c. echo '*'

Option (c) – the others will print the names of all the (non-hidden) files in the working
directory.

This is because putting a string in single quotes suppresses all shell expansions – refer to
Shotts chapter 7, “Seeing the World as the Shell Sees It”, under “Quoting”.

2. Scripts

If you haven’t tried the exercises in Shotts chapter 20 (“Text processing”), attempt those
first before doing this section.

It is suggested you try these problems on your own and then discuss with a partner – then
compare your answers with the rest of the class.

Running scripts

Try running the following commands:

� �
$ echo "echo hello" > my-script.sh
$./my-script.sh� �

You should see an error message. What is the problem here, and how do we fix it?

The file my-script.sh does not have executable permissions set, so Bash refuses to run it
as a script.

We can fix this by using the chmod command – for instance, by executing:

� �
$ chmod u+x my-script.sh� �

before running the script.

4

Manipulating text

Clone the Git repository at <https://github.com/cits4407/workshop04> onto your
computer. The file contained in it stores data on enrolments at Australian universities,
and is in tab-separated format – each line contains several “fields”, and the fields are
separated by tab characters. Files like this are often given the extension .tsv.

(Challenge exercise: Can you find a way of downloading the .tsv file without using
Git? Investigate the wget and curl commands, and take a look at the Github repository
in your browser to see what you can access via the browser.)

Write a script that uses the sort command to print the line of the file which contains a
record of the university with the highest total enrolment. (Hint: you might want to use
the head command, as well – check the documentation for it.)

Then extend your script to also print the lines for the universities with the highest and
lowest local enrolment.

Finally, add pipelines in your script, using the cut command to print just the names of
the universities, not the whole line.

Downloading the .tsv file:

If you go to https://github.com/cits4407/workshop04 on GitHub in your browser, you’ll
see you can click on the australian-universities.tsv file, to bring up information
about the file, and a Web version of its content (nicely displayed in a table).

Clicking on the button marked “raw” gives us the “raw” file content – the content exactly
as it is found in the text file.

And copying and pasting the URL from our browser into a terminal allows us to run a
command like the following:

� �
$ wget https://raw.githubusercontent.com/cits4407/workshop04/master/

↪→ australian-universities.tsv� �
which will download the .tsv file to our computer, without having to use git.

5

https://github.com/cits4407/workshop04

Print the highest total enrolment:

The following is one solution:

� �
tail -n +2 australian-universities.tsv | sort --field-separator $'\t'

↪→ -n -k 4 | tail -n 1� �
First, we use tail -n +2 to remove the header line – we don’t want that in our result.

Next we sort the lines by the 4th field (the “total” field), using
sort --field-separator $'\t' -n -k 4. The -n means “sort numerically”, the “-k 4”
means “sort by the 4th column”.

By default, sort assumes that columns are separated by whitespace. But this would mean
for instance that the string “Monash University” is incorrectly interpreted as being two
columns.

So we use the --field-separator option for sort, and tell it to use the tab character as
a separator. The dollar sign in front of

� �
$'\t'� �

tells Bash to interpret escape sequences – ways of representing “invisible” or “control”
characters like tab and return (“newline”).

$\t expands to a tab character, and $\n to a newline character.

Check out section 3.1.2 “ANSI-C Quoting” of the Bash manual for a full list of these
escape sequences.

Finally, tail -n 1 says to only print the very last line of the output.

So if we run this command pipeline, we should get the following output:

� �
$ tail -n +2 australian-universities.tsv | sort --field-separator $'\t'

↪→ -n -k 4 | tail -n 1
Monash University 42339 22140 64479� �

A challenge question: how might we double-check the answer to this question? What
software can we use which will also allow us to quickly see the university with highest
total enrolment?

6

https://www.gnu.org/software/bash/manual/html_node/ANSI_002dC-Quoting.html

Print the highest and lowest local enrolment:

For the highest local enrolment, we use the same pipeline as before, but sorting on field
2:

� �
tail -n +2 australian-universities.tsv | sort --field-separator $'\t'

↪→ -n -k 2 | tail -n 1� �
So we now give the arguments -k 2 to sort.

For the lowest local enrolment, we put the pipeline head -n 1 at the end, rather than
tail -n 1 – this gives us the first line:

� �
tail -n +2 australian-universities.tsv | sort --field-separator $'\t'
-n -k 2 | head -n 1� �

Print just the names:

We can put our three commands in a script like the following:

� �
#!/bin/bash

u_highest_total="$(tail -n +2 australian-universities.tsv | sort --
↪→ field-separator $'\t' -n -k 4 | tail -n 1 | cut -d $'\t' -f 1)"

u_highest_local="$(tail -n +2 australian-universities.tsv | sort --
↪→ field-separator $'\t' -n -k 2 | tail -n 1 | cut -d $'\t' -f 1)"

u_lowest_local="$(tail -n +2 australian-universities.tsv | sort --
↪→ field-separator $'\t' -n -k 2 | head -n 1 | cut -d $'\t' -f 1)"

echo "University with the highest total enrolment is: $u_highest_total"
echo "With the highest local enrolment is: $u_highest_local"
echo "With the lowest local enrolment is: $u_lowest_local"� �

We have added at the end of all the pipelines the command invocation cut -d $'\t' -f 1.

The cut command “slices” out columns from standard input. The -d $'\t' says to
use the tab character “\t” as a delimeter, and the -f 1 means to print only the first
column.

7

	0. Revision
	1. Shell expansions
	2. Scripts

