CITS4407 Open Source Tools and Scripting
Semester 1, 2021

Week 9 workshop — Markdown

Before starting this workshop, make sure you've reviewed the recommended reading for
weeks 1-8, and completed the lab sheets for weeks 2-7.

1. Installing software

In previous labs, we have seen that the apt-get command can be used for installing soft-
ware packages on Ubuntu. These software packages are downloaded from software reposito-
ries (not the same as Git repositories) — you can look in the file /etc/apt/sources.list
to see their addresses. You should see URLs like http://archive.ubuntu.com/ubuntu/ in
the file; the apt-get update command queries the servers at those addresses to obtain
fresh information about what packages are available, and the apt-get install command
downloads packages and adds them to your system.

Sometimes software we would like to use isn’t contained in those repositories. However,
there are many other ways of installing software on Ubuntu, and we will discuss three of
them.

Single-file scripts. If the software consists of a single script — a text file like the ones
you have written for the assignment, written in a scripting language (like Bash or Python)
— we can simply download the script, and run it by giving the full path to that script.

For instance, the numbers?2 script from the week 3 workshop can be downloaded from the
web page at https://github.com/cits4407/example/blob/master /numbers2 (from the link
labelled “raw” on that page).

We can download and run it with the following commands:

$ wget https://raw.githubusercontent.com/cits4407/example/master/
— numbers2
(... some command here -- you should know it already, from previous
labs ...)
$./numbers2

(The wget command downloads files from the web; it is covered in the Shotts textbook in
chapter 16, “Networking”.)

Single-file binaries. Scripts consist of human-readable plain text, but programs in some
languages are instead compiled into machine instructions which are not human-readable,

http://archive.ubuntu.com/ubuntu/
https://github.com/cits4407/example/blob/master/numbers2
https://www.lifewire.com/compiled-language-2184210

often called “binaries” or “binary executables”. These, too, we can download and run, but
we need to ensure that the binary is designed to run on the type of machine we are using.
(For instance, Linux can run on the Raspberry Pi, a tiny credit-card sized computer often
used by hobbyists; but machine instructions for the Raspberry Pi will be different from
the ones used by most laptops.)

Scripting language packages. If a program consists of just one script file, then we
can just download and run it, as we have seen. But a program may be large enough that
it is best broken into multiple files, or might depend on other programs or libraries.

Because of this, many scripting languages have their own software repositories, which
allow you to download programs and libraries written in languages like Python, Ruby,
JavaScript, and Perl. Each language will have its own tool for installing packages written
in that language — we will use the tool used by Python, called pip.

2. Writing Markdown

We will create a file written in the Markdown markup language, and show how to convert
it to other formats. In a text editor, create a text file named “my-startup-plan.md”. (Text
files can always be called anything you like, but conventionally, Markdown files are given
the extension “.md” or “.markdown”.) Add the following text to the file:

title: Startup plan
author: YOUR NAME
date: 29 April 2021
fontfamily: times

Introduction

Description of the plan for my new startup.
The plan

1. Come up with great idea

2. Create business
3. Profit $$%

Save the file.

3. Converting to HTTML and Word with Pandoc

We will now download the pandoc tool, which can be used for converting between a wide
range of formats — including MS Word, Web pages (HTML), and PowerPoint.

https://en.wikipedia.org/wiki/Raspberry_Pi
https://www.python.org
https://www.ruby-lang.org
https://en.wikipedia.org/wiki/JavaScript
https://www.perl.org
https://packaging.python.org/tutorials/installing-packages/

You can download Pandoc from the web page at https://github.com/jgm /pandoc/releases
/tag/2.13; the file you want (if you are running on a lab machine or most laptops) is called
pandoc-2.13-1linux-amd64.tar.gz. (If you are running Ubuntu on a recent MacOS X
computer, you may instead need to use pandoc-2.13-1linux-armé4.tar.gz).

This file is compressed, and contains multiple files within it (like a Zip file), so we need to

extract its contents using the tar program (covered in Shotts chapter 18, “Archiving and
Backup”):

[$ tar xvf pandoc-2.13-linux-amd64.tar.gz j

You should now be able to find the pandoc binary by typing (for instance):

[$ 1ls ./pandoc-2.13/bin/pandoc }

And you can convert your Markdown file to HTML by typing:

$./pandoc-2.13/bin/pandoc --from markdown --to html --output=my-
— startup-plan.html my-startup-plan.md

If you list the contents of the current directory, you should now see a new file pandoc
has created, my-startup-plan.html. You can open this in a web browser (using “File /
Open” from the menu); if you use WSL2 on Windows, get your lab instructor to show
you how to find where the file is located.

(We can also convert to MS Word format (.docx), by running . /pandoc-2.13/bin/pandoc

--from markdown --to docx --output=my-startup-plan.docx my-startup-plan.md,
but you will need to have MS Word, the open source LibreOffice software suite, or similar
software installed to open it.)

4. Converting to PDF with Pandoc and WeasyPrint

We can also convert our Markdown file to PDF format — the lab worksheets are created
in this way. In addition to Pandoc, we will need a Python library called “WeasyPrint”.
The lab worksheets use a typesetting system called LaTeX, but WeasyPrint is smaller
and easier to install.

First install the Python language, its package management tool pip, and several graphics
libraries:

$ sudo apt-get update
$ sudo apt-get install python3 python3-pip libcairo2 libpango-1.0-0
— libpangocairo-1.0-0

Then install the WeasyPrint package for Python:

https://github.com/jgm/pandoc/releases/tag/2.13
https://github.com/jgm/pandoc/releases/tag/2.13
https://www.libreoffice.org
https://weasyprint.org
https://www.latex-project.org

£$ pip3 install --user WeasyPrint

We can now convert from Markdown to PDF":

$ export PATH=~/.local/bin:$PATH
$./pandoc-2.13/bin/pandoc --from markdown --to html --pdf-engine=
— weasyprint --output=my-startup-plan.pdf my-startup-plan.md

We need the export command, which adjusts our $PATH environment variable, because
by default, pip does not put new programs in (for instance) /bin or /usr/bin, where
many system programs are found. (In fact, you cannot add programs to those directories
unless you use sudo, because non-root users don’t have permissions to write files to
those directories.) Instead, it puts them in our home directory, within a directory called
.local/bin. The export command tells Bash to look in that directory for executable
programs.

The PDF output can be customized in many ways, but we will not cover them here — see
if you can find out more about how to do so.

5. Other Markdown features

See if you can find out (Google is a good place to start!) how to include the following
features in your Markdown documents:

o bulleted lists
e images
« mathematical equations

Create a Markdown document that includes these, and convert it to PDF.

	1. Installing software
	2. Writing Markdown
	3. Converting to HTML and Word with Pandoc
	4. Converting to PDF with Pandoc and WeasyPrint
	5. Other Markdown features

