CITS4407 Open Source Tools and Scripting
Semester 1, 2021

Week 10 workshop — Build automation

Before starting this workshop, make sure you've reviewed the recommended reading for
weeks 1-9, and completed the lab sheets for weeks 2-8.

0. Required software

For this lab, you will need to ensure the make package is installed on Ubuntu. (You should
know how to install Ubuntu packages from previous labs.)

You also will need to download Pandoc from the webpage at https://github.com/jgm/
pandoc/releases/tag/2.13 and place it on your PATH. (You should know how to download
Pandoc and amend your PATH from last week’s lab.)

1. Makefiles

Make is a build automation tool, which uses a configuration file called a Makefile. A
Makefile contains rules consisting of a target, dependencies, and a recipe, describing what
to build, and how to build it. Make uses the modification time of prerequisites to re-build
targets only when needed.

Sometimes targets are files that need to be created; but sometimes they are best thought
of as naming a set of tasks we would like done.

Building software artifacts using Makefiles has several advantages:

o Make is widely available

o Make is a standard build automation tool, which many software developers are
familiar with. Using make instead of a less standard tool makes it easier for other
people to build your project.

» Makefiles are written in plain text that is easily human-readable and -editable (at
least when Makefiles are kept simple).

o Make does not place any restrictions on what tools or compilers your project uses.

2. Creating a Makefile

Clone the repository at https://github.com/cits4407 /workshop08.git, and cd into it. (You
should know how to do this from previous labs.)

https://github.com/jgm/pandoc/releases/tag/2.13
https://github.com/jgm/pandoc/releases/tag/2.13
https://github.com/cits4407/workshop08.git

Inside, you will find:

o an empty Makefile
» a data file, data/ENROLMENTS-2017.

In this lab, we will create a report written in Markdown using data contained in the data
file, then convert it to HTML using Pandoc.

Edit the Makefile using your preferred editor. Add the following rule:

gengb505-students: data/ENROLMENTS-2017
./create_listing data/ENROLMENTS-2017 > gengb5505-students

Note that on the second line of this rule, the first character MUST be a tab character
(not a space). You can check whether it is by running the following:

[$ cat --show-tabs Makefile j

If you have correctly typed the rule, it should show up with the tab marked as “~I”:

gengb505-students: data/ENROLMENTS-2017
~I./create_listing data/ENROLMENTS-2017

Try running “make gengb505-students” You should see that

(a) Make reports that an error occurred — the command ./create_listing is not
found, since we have not created it yet.

(b) An empty file gengb505-students is created (since that’s where we redirected
output to).

Try running the same command again; you should see make claiming that
“gengbb05-students is up to date” — can you explain why?

This is undesirable behaviour — when something goes wrong with the create_listing
command, we don’t want the target to be created.

Delete the empty geng5505-students file, and edit the Makefile by adding the following
(either before or after our existing rule, but at the start of the file is conventional):

[. DELETE_ON_ERROR:]

Try running make geng5505-students again; this time, you should see that

(a) Make reports that an error occurred — the command ./create_listing is not
found, since we have still not created it.
(b) No empty file gengb505-students is left behind — make deletes it.

DELETE_ON_ERROR is a special target used by GNU Make; when it is added to a Makefile,
make alters its normal behaviour.

3. Preparing data

You will need to create a script, ./create_listing, which:

o Takes an argument on the command-line — an input file to read.
« Outputs (on standard output) all lines in the file containing the string GENG5505-1.

~
#!/usr/bin/env bash

input_file=$1

cat $input_file | grep 'GENG5505-1'

|

You should be familiar with how to do this based on previous workshops on creating
scripts.

Once your script is ready, try running make geng5505-students again — if you have
written the script correctly, the file geng5505-students should be created, containing
the data we want.

Make special variables

The rule

gengb505-students: data/ENROLMENTS-2017
./create_listing data/ENROLMENTS-2017 > gengb505-students

could be made simpler — it needlessly repeats the name of the target, geng56505-students.
Based on the material on make contained in the lecture slides and the lecture readings,
how would you amend the Makefile to avoid this? (Avoiding unnecessary repetition in
source code and data is sometimes called the “DRY” Principle — “Don’t Repeat Yourself”.
The opposite of “DRY” is “WET” — “Write Everything Twice” or “We Enjoy Typing”.)

[Use the special “$@” Make variable:

geng5505-students: data/ENROLMENTS-2017
./create_listing data/ENROLMENTS-2017 > $@

|

(Another question to consider in your own time: what about the “data/ENROLMENTS-2017"
file — can we avoid mentioning it twice?)

https://en.wikipedia.org/wiki/Don't_repeat_yourself

([Use the special “$~" Make variable (“all dependencies”) or the “$<” variable (“the left-most |
dependecy”):

gengbb05-students: data/ENROLMENTS-2017
./create_listing $~ > $@

4. Creating a report

Add a new rule to your Makefile:

gengbb0b—-students.md: gengbb05-students
./create_report > gengb505-students.md

Your task is to write a script, create_report, which will produce a report written in
Markdown, based on data in the geng5505-students file. The script should print the
report on standard output; our Makefile will redirect that to gengb505-students.md.

The report will need to use markup syntax covered in the lecture, lab and reading material
on Markdown. The report should contain:

e A header, “GENG5505 Report”

o A summary line: “No. of GENG5505 students: n” (where n is the number of lines
in our gengb505-students file).

o A bulleted list of all the student numbers (but not the GENG5505 code).

(A sample solution:

#!/usr/bin/env bash

echo "GENG5505 Report"
echo

num_students="$(cat gengb505-students | wc -1)"

echo "No. of GENG5505 students: $num_students"
echo

create a bulleted list of student numbers
cut -f 1 gengb505-students | sed 's/~/- '

Not sure why the extra “echo” commands are there? Try leaving them out and see what
happens.

5. Self-study exercise

Try this in your own time (or in the lab, if you have time available).

Create a new rule which has as its target a file output/geng5505-students.html, and as
dependency the file geng5505-students.md. The recipe in the rule should invoke Pandoc,
to create HTML output from the Markdown file.

Lastly, try generalizing this rule.

Rather than having gengb505-students.md specifically as a dependency and
output/gengb505-students.html as a target, amend your rule so it will work for any
.md file in the current directory, and create a corresponding HTML file in the output
directory.

[Use a pattern in the rule:

%h-students.md: %
./create_report > $@

	0. Required software
	1. Makefiles
	2. Creating a Makefile
	3. Preparing data
	Make special variables

	4. Creating a report
	5. Self-study exercise

